


PII: S0040-4039(97)00765-X

## Synthesis and Reactions of 1,2-Disubstituted Methylenecyclopropanes Prepared via Intramolecular Cyclopropanation of Allenic Diazoacetates.

Mark Lautens,\* Christophe Meyer, and Arjan van Oeveren

Department of Chemistry, University of Toronto, Toronto, Ontario, Canada M5S 3H6

Abstract: Diazoacetates derived from  $\alpha$ - or  $\beta$ - allenic alcohols, prepared using the glyoxylic acid chloride p-toluenesulfonylhydrazone method, undergo regioselective intramolecular cyclopropanation in the presence of a copper (II) catalyst in refluxing toluene, leading to synthetically useful di- or trisubstituted methylenecyclopropyl lactones. The diastereoselectivity of the process has been studied. © 1997 Elsevier Science Ltd.

Methylenecyclopropanes have been shown to possess extremely useful reactivity in organic synthesis, as illustrated by the numerous metal catalyzed processes affecting one of the three reactive sites (distal or vicinal cyclopropane bond and the olefin) of these highly strained carbocycles.<sup>1</sup>

As a result, a number of strategies have been developed for the synthesis of methylenecyclopropanes. Among these general methods, routes involving a direct cyclopropanation of allenes are potentially the most efficient. Contributions in this field include some examples of Simmons-Smith cyclopropanations of allenes which often lead to the spirocyclic hydrocarbons, hydroxyl directed cyclopropanation of  $\alpha$ -allenic alcohols,<sup>2</sup> addition of halogenocarbenes or carbenoids to allenes as well as the photochemical or Pd(II) catalyzed reaction with diazoesters.<sup>2</sup>

Whereas intramolecular cyclopropanation of allylic and homoallylic diazoacetates have been the subject of numerous investigations in recent years,<sup>3</sup> the corresponding reaction for allenes has not been studied to our knowledge. Following our studies on intramolecular [3+2] cycloadditions of allyl and propargyl ethers derived from diastereomeric methylenecyclopropyl carbinols<sup>1d,e</sup> and hydrostannation of methylenecyclopropanes,<sup>1k</sup> it became desirable to synthesize methylenecyclopropanes incorporating additional substitution and we report herein our preliminary results on the intramolecular cyclopropanation of diazoacetates derived from allenic alcohols.

Allenic alcohols **1a-i**, prepared by conventional methods,<sup>4</sup> were converted to their diazoesters in good yields using the procedure reported by Corey and Myers.<sup>5</sup> In the case of the tertiary alcohol **1b**, a two fold excess of the reagents was necessary to achieve efficient conversion.

We initially examined rhodium catalysts in the intramolecular cyclopropanation of diazoacetates 2. Unfortunately use of  $Rh_2(OAc)_4$  or  $Rh_2(OOct)_4$  in refluxing dichloromethane, with slow addition of the substrate over 12 hours or more, gave complex reaction mixtures with only a trace of the desired methylenecyclopropanes 3. Other rhodium catalysts were not tested in our preliminary studies since we found

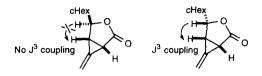
that the intramolecular cyclopropanations can be performed using bis-(N-*tert*-butylsalicylaldiminato) copper (II) as a catalyst, as originally reported for allylic diazoacetates.<sup>5</sup> Thus, diazoesters **2a** and **2b** gave good to excellent yields of the corresponding substituted 5-methylene-3-oxabicyclo[3.1.0]hexan-2-one **3a** or 6-methylene-3-oxabicyclo[4.1.0]heptan-2-one structures **3b** exclusively, demonstrating that the cyclopropanation has occurred regioselectively at the more substituted double bond of the allenic moiety. However, diazoester **2c** gave a complex mixture of products rather than the corresponding 7-methylene-3-oxabicyclo[5.1.0]octan-2-one **3c**.

| $\begin{array}{c} 0 & \text{NNHTs} \\ R_3 & \begin{array}{c} 0 & \text{C} \\ R_1 & 1 \end{array} \\ OH & \begin{array}{c} 0 & \text{C} \\ 2 \end{array} \\ \hline 0H & \begin{array}{c} 0 & \text{C} \\ 2 \end{array} \\ \hline 0 & \text{C} \\ \hline 0 & \text{C} \end{array} \\ \hline 0 & \text{C} \end{array} \\ \begin{array}{c} 0 & \text{C} \\ 0 & \text{C} \end{array} \\ \hline 0 & \text{C} \\ \hline 0 & \text{C} \end{array} \\ \begin{array}{c} R_1 \\ R_2 \\ \hline 0 & \text{C} \\ R_2 \end{array} \\ \hline 0 & \text{C} \\ \hline 0 & \text{C} \\ \hline 0 & \text{C} \end{array} \\ \begin{array}{c} 0 & \text{C} \\ R_1 \\ R_2 \\ \hline 0 & \text{Substrate added} \\ \hline 0 & \text{c} \\ \hline 0 & \text{c} \end{array} \\ \begin{array}{c} 0 & \text{c} \\ R_3 \\ \hline 0 & \text{c} \end{array} \\ \begin{array}{c} R_1 \\ R_2 \\ \hline 0 & \text{c} \end{array} \\ \begin{array}{c} 0 & \text{c} \\ R_3 \\ \hline 0 & \text{c} \end{array} \\ \begin{array}{c} 0 & \text{c} \\ R_3 \\ \hline 0 & \text{c} \end{array} \\ \begin{array}{c} R_1 \\ R_2 \\ \hline 0 & \text{c} \end{array} \\ \begin{array}{c} 0 & \text{c} \\ R_3 \\ \hline 0 & \text{c} \end{array} \\ \begin{array}{c} R_1 \\ R_2 \\ \hline 0 \\ \hline 0 & \text{c} \end{array} \\ \begin{array}{c} 0 & \text{c} \\ R_3 \\ \hline 0 \\ \hline \end{array} \\ \begin{array}{c} R_1 \\ R_2 \\ \hline 0 \\ \hline 0 \\ \hline \end{array} \\ \begin{array}{c} 0 \\ R_3 \\ \hline 0 \\ \hline \end{array} \\ \begin{array}{c} R_1 \\ R_3 \\ \hline 0 \\ \hline \end{array} \\ \begin{array}{c} 0 \\ R_3 \\ \hline \end{array} \\ \begin{array}{c} R_1 \\ R_3 \\ \hline \end{array} \\ \begin{array}{c} 0 \\ R_3 \\ \end{array} \\ \end{array} $ \\ \begin{array}{c} 0 \\ R_3 \\ \end{array} \\ \begin{array}{c} 0 \\ R_3 \\ \end{array} \\ \end{array}  \\ \begin{array}{c} 0 \\ R_3 \\ \end{array} \\ \begin{array}{c} 0 \\ \end{array} \\ \end{array} \\ \begin{array}{c} 0 \\ \end{array} \\ \end{array}  \\ \begin{array}{c} 0 \\ \end{array} \\ \end{array}  \\ \begin{array}{c} 0 \\ \end{array} \\ \end{array}  \\ \begin{array}{c} 0 \\ \end{array} \\ \end{array}  \\ \begin{array}{c} 0 \\ \end{array} \\ \end{array} \\ \begin{array}{c} 0 \\ \end{array} \\ \end{array} \\ \end{array}  \\ \begin{array}{c} 0 \\ \end{array} \\ \end{array}  \\ \begin{array}{c} 0 \\ \end{array} \\ \end{array} \\ \end{array}  \\ \end{array}  \\ \begin{array}{c} 0 \\ \end{array} \\ \end{array} \\ \end{array}  \\ \begin{array}{c} 0 \\ \end{array} \\ \end{array}  \\ \end{array}  \\ \begin{array}{c} 0 \\ \end{array} \end{array}  \\ \end{array}  \\ \begin{array}{c} 0 \\ \end{array} \end{array} \\ \end{array}  \\ \end{array}  \\ \end{array}  \\ \end{array}  \\ \end{array}  \\ \end{array}  \\ \end{array}  \\ \end{array}  \\ \end{array}  \\ \end{array}  \\ \end{array}  \\ \end{array}  \\ \end{array}  \\ \end{array}  \\ \end{array}  \\ \end{array}  \\ \end{array}  \\ \end{array}  \\ \end{array}  \\ \end{array}  \\ \end{array}  \\ \end{array}  \\ \end{array}  \\ \end{array}  \\ \end{array}  \\ \end{array}  \\ \end{array}  \\ \end{array}  \\ \end{array}  \\ \end{array}  \\ \end{array}  \\ \\ \end{array}  \\ \\ \end{array}  \\ \end{array}  \\ \end{array}  \\ \end{array}  \\ \end{array}  \\ \end{array} |   |                                    |                |                        |    |                    |        |                    |                                  |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|------------------------------------|----------------|------------------------|----|--------------------|--------|--------------------|----------------------------------|
| 1 <del>a-I</del><br>Compound                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | n | R <sub>1</sub>                     | R <sub>2</sub> | 2a–l<br>R <sub>3</sub> |    | yield <sup>b</sup> |        | yield <sup>b</sup> | 3 <b>a-i</b><br>d.r <sup>c</sup> |
| 1a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0 | -(CH <sub>2</sub> ) <sub>5</sub> - |                | _ <u>з</u><br>Н        | 2a | 66% <sup>d</sup>   | 3a     | 94%                |                                  |
| 15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1 | Me                                 | Me             | н                      | 2b | 39% <sup>e</sup>   | 36     | 76%                |                                  |
| 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 2 | н                                  | н              | н                      | 2c | 61%                | <br>3c | 1                  |                                  |
| 1d                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0 | н                                  | Ph             | н                      | 2d | 63%                | 3d     | 84%                | 50/50                            |
| 1e                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0 | н                                  | cHex           | н                      | 2e | 82%                | 3e     | 82%                | 55/45                            |
| 1f                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1 | н                                  | t-Bu           | н                      | 2f | 82%                | 3f     | 83%                | 53/47                            |
| 1g                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0 | н                                  | Ph             | н                      | 2g | 79%                | 3g     | 54%                | 75/25                            |
| 1h                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0 | н                                  | cHex           | Me                     | 2h | 79%                | 3h     | 89%                | 65/35                            |
| 1i                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0 | н                                  | cHex           | Me <sub>3</sub> Si     | 2i | 80%                | 3i     | 90%                | 80/20                            |
| 1j                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0 | н                                  | Ph             | Me <sub>3</sub> Si     | 2j | 52%                | 3      | 90%                | 85/15                            |
| 1k                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0 | н                                  | t-Bu           | Me <sub>3</sub> Si     | 2k | 74%                | 3k     | 78%                | 94/ 6                            |
| 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0 | н                                  | cHex           | tBuPh <sub>2</sub> Si  | 21 | 64%                | 31     | 60%                | 90/10                            |

a) Cu(TBS)<sub>2</sub> = bis-(N-tert-butylsalicilylaldiminato) copper(II). b) Isolated yields of analytically pure products.

c) Diastereoisomeric ratio measured on the <sup>1</sup>H NMR spectra of the crude reaction mixture.

d) A two fold excess of the reagents was used. e) Yield based on ethyl pentadi-2,3-enoate (2 steps).

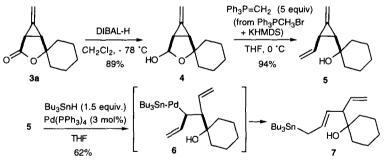

f) Complex reaction mixture.

## Table 1

The intramolecular cyclopropanation of diazoacetates 2d, 2e, and 2f proceeded in excellent yield, but the diastereoselectivity was poor. Improved diastereoselectivity was observed in the case of the secondary homoallenic diazoacetate 2g. Substituents on the internal double bond of the allene also influenced the diastereoselectivity of the process. Thus, the methyl substituted allenic diazoacetate 2h gave 3h with a marginally better d.r compared to 3d and with no diminution in yield. The trimethylsilyl substituted allenic diazoacetate 2i gave 3i as a 80/20 mixture of diastereomers in excellent yield, whereas the diastereomeric ratio increased to 90/10 in the case of 2l, although the yield was reduced perhaps due to the steric bulk of the TBDPS group. Good diastereoselectivity was also observed for the conversion of 2j to 3j. The best d.r. was found for 3k, which was obtained as a 94/6 mixture of diastereomers.

Fortunately the diastereomers of 3d, 3e, and 3f were easily separated by flash chromatography and we

assigned their relative stereochemistry on the basis of the characteristic splitting patterns exhibited by the methine proton  $\alpha$  to the ring oxygen of the methylenecyclopropyl lactones. No coupling is observed between the two hydrogens when they are trans whereas a J<sup>3</sup> coupling is seen when the hydrogens are cis (Scheme 1).




## Scheme 1

For the trimethylsilyl substituted methylenecyclopropyl lactones 3i, 3j, and 3k, assignment of the relative stereochemistry was less straightforward. For 3k a strong NOE was observed between the TMS protons and the methine proton  $\alpha$  to the ring oxygen, while only a very weak interaction between the TMS and the *t*-butyl protons was observed. This indicates that the TMS group and the *t*-butyl group have a trans relationship.

We have initiated preliminary investigations to exploit the use of the methylenecyclopropyl lactones generated by this reaction, in organic synthesis. Thus, reduction of the lactone **3a** to the lactol **4** with DIBAL-H was followed by exposure to an excess of methylenephosphorane (5 equiv.) (generated by treatment of the corresponding phosphonium salt with potassium hexamethyldisilazide (KHMDS)) in THF at 0  $^{\circ}$ C to afford the corresponding vinyl methylenecyclopropylcarbinol **5**.

We have recently reported that methylenecyclopropanes undergo a hydropalladation-rearrangementreductive elimination in the presence of tin hydrides to furnish a novel route to homoallylstannanes.<sup>1k</sup> We have now examined the reaction **5** with Bu<sub>3</sub>SnH in the presence of a catalytic amount of Pd(PPh<sub>3</sub>)<sub>4</sub> and found that the allylstannane **7** is produced in 62% yield. It is particularly noteworthy that the use of a soluble palladium catalyst leads to reaction at only one of the two olefins present in **5**. Reaction at the more strained exocyclic olefin and regioselective rearrangement of the cyclopropylmethyl stannylpalladium intermediate generates an allylstannyl palladium complex **6** (as a  $\sigma$  or  $\pi$ -complex) which reductively eliminates regio- and stereoselectively to form the *trans* allylstannane **7** (Scheme 2).<sup>6,7</sup>



Scheme 2

In conclusion, we have shown in this preliminary study that diazoacetates derived from  $\alpha$ - and  $\beta$ -allenic alcohols undergo regioselective cyclopropanation to give the corresponding methylenecyclopropyl lactones in good to excellent yields. The methylenecyclopropyl lactones can be converted to vinylmethylenecyclopropylcarbinols whose hydrostannation affords an entry to novel allylstannanes. The importance of methylenecyclopropanes and allylmetal compounds in synthesis suggests that additional studies to improve the diastereoselectivity of the process and to develop an enantioselective version of this reaction be carried out. These studies are now in progress and the results will be reported in due course.

Acknowledgment. The E.W.R. Steacie Memorial Fund, Natural Science and Engineering Research Council (NSERC) of Canada, Upjohn/Pharmacia and Allelix Biopharmaceuticals are thanked for financial support. C.M. thanks the Ministre des Affaires Etrangeres Francais for a Lavoisier Fellowship. A.v.O. was supported by the Netherlands organization for scientific research (NWO).

## **REFERENCES AND NOTES**

- (a) Binger, P.; Büch, H.M. Top. Curr. Chem. 1987, 135, 77 (b) For a review on metal-catalyzed cycloadditions including [3+2] reactions with methylenecyclopropanes see: Lautens, M.; Klute, W.; Tam, W. Chem. Rev. 1996, 96, 49 and references cited therein. (c) Binger, P.; Fox, D. In: Methods of Organic Chemistry (Houben Weyl), vol. E 21C, Part D., 1.6.1.2.3, p 2997. (d) Lautens, M.; Ren, Y.; Delanghe, P.H.M. J. Am. Chem. Soc. 1994, 116, 8821. (e) Lautens, M.; Ren, Y. J. Am. Chem. Soc. in press.(f) Donaldson, W.A.; Brodt, C.A. J. Organomet. Chem. 1987, 330, C33-C36. (g) Fournet, G.; Balme, G.; Barieux, J.J.; Gore, J. Tetrahedron 1988, 44, 5809. (h) Albright, T.A.; Clemens, P.R.; Hughes, R.P.; Hunton, D.E.; Margerum, L.D. J. Am. Chem. Soc. 1982, 104, 5369. (i) Chatani, N.; Takeyasu, T.; Hanafusa, T. Tetrahedron Lett. 1988, 32, 3979. (j) Bräse, S.; De Meijere, A. Angew. Chem. Int. Ed. Engl. 1995, 34, 2545. (k) Lautens, M.; Meyer, C.; Lorenz, A. J. Am. Chem. Soc. in press.
- 2. (a) Lautens, M.; Delanghe, P.H.M. J. Am. Chem. Soc. 1994, 116, 8526 and references cited therein. (b) Landor, S. The Chemistry of Allenes; vol. 2, Academic Press: London 1982.
- (a) Doyle, M.P.; Pieters, R.J.; Martin, S.F.; Austin, R.E.; Oalmann, C.J.; Müller, P. J. Am. Chem. Soc. 1991, 113, 1423. (b) Martin, S.F.; Oalmann, C.J.; Liras, S. Tetrahedron Lett. 1992, 33, 6727. (c) Martin, S.F.; Spaller, M.R.; Liras, S.; Hartmann. B. J. Am. Chem. Soc. 1994, 116, 4493.
- The allenic alcohols were prepared by conventional methods: For 1a,d,e see ref. 2. β-allenic alcohols 1b and 1f were prepared from ethyl pentadi-3,4-enoate, respectively by addition of MeMgBr, or monoreduction with DIBAL-H followed by one-pot addition of PhMgBr: (a) Brandsma, L.; Verkruijsse, H.D. Synthesis of Acetylenes, Allenes and Cumulenes; Elsevier: Amsterdam, 1981. (b) Pyo, S.; Skowron III, J.F.; Cha, J.K. Tetrahedron Lett. 1992, 33, 4703. For the preparation of 1g,h,i see: (c) Ishiguro, M.; Ikeda, N.; Yamamoto, H. J. Org. Chem. 1982, 47, 2225. For the preparation of 1c see: (d) Arseniyadis, S.; Goré, J.; Roumestant, M.L. Tetrahedron 1979, 35, 353.
- 5. Corey, E.J.; Myers, A.G. Tetrahedron Lett. 1984, 25, 3559.
- 6. This compound is contaminated by a minor by-product which might be its (Z) isomer.
- 7. For a review on allylic organometallics including allylstannanes, see: Yamamoto, Y.; Asao, N. Chem. Rev. 1993, 93, 2207.

(Received in USA 7 April 1997; accepted 17 April 1997)